Underactive Bladder Modeling

Tony Kanai University of Pittsburgh

CURE-UAB 2nd International Congress on Underactive Bladder Session 1: Pathophysiology of UAB

ICS Definitions

- A contraction of reduced strength and/or duration, resulting in prolonged bladder emptying and/or failure to achieve complete bladder emptying within a normal time span based on a urodynamic diagnosis.
- UAB covers the general condition irrespective of whether the cause is afferent dysfunction, lack of CNS control, or the detrusor itself. In terms of a syndrome/symptombased diagnosis the proposed term is UAB syndrome.

Current Therapeutic Approaches

- 1. Intermittent or Indwelling Catheterization—potential for urinary tract infections
- 2. Perigenital stimulation—may reflexly contract the detrusor
- 3. Muscarinic receptor agonists—contract the detrusor (e.g., bethanechol)
- 4. Cholinesterase inhibitors—prevent the breakdown of ACh (e.g., distigmine)
- 5. α_1 -adrenergic receptor antagonists—relax the urethra (e.g., doxazosin)

Animal Models for Studying UAB

typical and non-typical

- 1. Aging Model: Mice and rats 18-24 months of age
- 2. Diabetic Model: Type 1 and type II diabetic mice and rats
- 3. **Obstruction and Overdistension:** PBOO and hydrodistension (30 min at 120 cm H_2 O)
- 4. Ischemia and Oxidative Stress: Ischemia/reperfusion and H_2O_2 installation
- 5. Neurogenic: Pelvic nerve and spinal cord injury
- 6. Genetic Mutations: FGFR2-/- and FGFR1/2-/- mice

Innervation of the Bladder

different spinal cord and nerve injury models

Upper Motoneuron Lesion Models

contusion and transection

UMN Contusion & Transection Models

cannot impact the cauda equina

SCI-induced Detrusor-Sphincter-Dyssynergia

enhancement of tonic activity during phasic bursting

Detrusor-Sphincter-Dyssynergia

circuity changes that may be responsible

UMN Lesions and Proneurotrophins

Spinal Cords: 8 Weeks after UMN Lesions

effects of centrally acting LM11A-31 versus peripherally acting LM11A-24

A. Control B. LM11A-31 C. LM11A-24

Bladder Walls: 1 & 10 Days after an UMN Lesion

benefits of LM11A-31

Transepithelial Resistances (TER)

1 day after UMN lesions, both LM11A-24 and LM11A-31 preserved barrier function

LM11A-31 Improves DSD and Motor Function

mice treated with LM11A-24 do not show improvement

Cystometry: Mice with UMN Lesions LM11A-31 improved DSD and reflex voiding

Lower Motoneuron Lesion Model

transection

LMN Lesions and Proneurotrophins

Bladder Urothelium and Collagen Deposition

following L₅-L₆ LMN lesions: benefits of LM11A-31 therapy

LM11A-31 Decreases Urinary Retention

LMN lesion 4 weeks + LM11A-31 LMN lesion 6 weeks + LM11A-31

	4 wk, µl	6 wk, µl
intact SC	200 ± 24	
untreated	71 ± 12	11 ± 21
LM11A-31	301 ± 24	482 ± 36

LM11A-31 Increases Spontaneous Contractions

which may increase sensation when the bladder is full and help expel urine

LM11A-31 Effects in LMN Lesions

hypogastric efferents may repopulate parasympathic intramural ganglia

FGFR1 & FGFR1/2 Null Mouse Models

- 4 FGFRs identified (FGFR1 FGFR4)
- > 22 FGF isoforms identified in humans
- Signaling through the FGFR is important for differentiation and cell survival.

Fibroblast Growth Factor Receptor

FGFR2^{-/-} Mice Display Life-long Dysfunctional Voiding

Control

Decerbrate Cystometry—WT versus FGFR2-/-

Nerve- and Agonist-mediated Contractile Responses in whole bladder sheets from 1 month old mice

Length-tension Profiles in Whole Bladder Sheets

in whole bladder sheets from 1 month old mice

Collaborators

University of Pittsburgh:

Kanai Laboratory: Youko Ikeda and Irina Zabbarova

University-wide: Gerry Apodaca, Carl Bates, Lori Birder, Evan Carder, Chet deGroat, Mike Epperly, Bruce Freeman, Aura Kullmann, Guy Salama, Pradeep Tyagi, Ken Walker, Peter Wipf and Naoki Yoshimura

Princeton University: Lynn Enquist University of Bristol: Chris Fry and Marcus Drake

Funding: NIH/NIDDK

Pittsburgh at Night